

M =	= Mo	odula	r bel	ts						
	Belt pitch									
		S =	et one-piece; Z = split sprocket							
			Nu	mbe	er of teeth					
				Sha	aft size					
					Shaft type: Q = square shaft; R = round shaft					
					Material: 8 = PA; 6 = POM					

M 11 S 17 25 Q 8

Sprocket availability

Туре	Number of teeth	Diam. of pitch Ø d_p		, A ₁		Hub width B_L		Square b	Square bore Q		Ø Round bore R	
		mm	inch	mm	inch	mm	inch	mm	inch	mm	inch	
S-C1	12	49.8	2.0	21.4	0.84	25	0.98	-	1	25	1	PA
S-C1	14	58.0	2.3	25.5	1.00	25	0.98	-	1	25	³ / ₄ / 1	PA
S-C1	17	70.2	2.8	31.6	1.24	25	0.98	-	-	25	³ / ₄ / 1	PA
S-C1	19	78.4	3.1	35.7	1.41	25	0.98	-	-	-	1	PA
S-C1	24	98.8	3.9	45.9	1.80	25	0.98	40	1.5	25	1	PA
S-C1	36	148.0	5.8	69.5	2.74	25	0.98	40 / 60	1.5 / 2.5	-	1	PA

S-C1: machined sprockets. Other sprocket and hub sizes on request.

Key ways for round bore shape follow European standards for metric sizes and US standards for imperial sizes. For detailed dimensions see table in the Design Guide.

Other materials available on request.

Sprocket one-piece (solid)

Sprocket arrangement

BE Belt RC Retainer SP Sprocket b belt width

The distance ${\bf C}$ between the sprocket axis and the slider support ${\bf ST}$ is minimal 14 mm (0.55").

Wearstrips

Between driving shaft and idling sprockets or rollers the belt is carried by a slider support furnished with longitudinal wear strips (SL) from UHMW Polyethylene or other suitable material.

Sprocket positioning

For correct positioning of the center sprocket divide the belt width by the link increment. The rounded result will be an even or an odd number. These numbers are the criteria for offset or no offset, see table.

Belt type	Sprocket spacing a		Sprocket edge distance (minimal)		Criteria for center sprocket position	Result of for- mula (rounded)	Offset e	Remarks	
	minimal mm <i>inch</i>	maximal mm <i>inch</i>	X_L mm <i>inch</i>	X_R mm inch	mm inch		mm inch	Offset to which side	
M1185	50,8 <i>2</i>	101.6 <i>4</i>	63,5 <i>2,5</i>	63,5 <i>2,5</i>	n.a.	n.a.	12,7 <i>0,5</i>	right or left side for all belt widths	

In addition to the sprockets it is recommended to use support rollers at the belt edges on drive and idling side. Distance of the center of the support roller to the belt edge: X_1 and X_R

Numbers of sprockets and wearstrips for M1185

Standard belt width (nominal)		Number of sprockets per shaft	Number of wearstrips		
mm	inch	min. number	Carryway (top)	Returnway (bottom)	
203	8	2	3	2	
254	10	2	3	2	
305	12	2	3	2	
356	14	3	4	3	
406	16	3	4	3	
457	18	3	4	3	
508	20	5	5	3	
559	22	5	5	3	
610	24	5	5	3	
660	26	5	6	4	
711	28	7	6	4	
762	30	7	6	4	
813	32	7	7	4	
864	34	9	7	4	
914	36	9	7	4	
965	38	9	8	5	
1'016	40	9	8	5	
1'067	42	11	8	5	
1'118	44	11	9	5	
1'168	46	11	9	5	
1'219	48	11	9	5	
1'270	50	13	10	6	
1'321	52	13	10	6	
1'372	54	13	10	6	
1'422	56	15	11	6	
1'473	58	15	11	6	
1'524	60	15	11	6	
1'575	62	15	12	7	
1'626	64	17	12	7	

The number of sprockets depends on the belt load and may be different for driving and idling shafts. For calculation of correct sprocket number please use LINK-SeleCalc.

Product liability, application considerations

If the proper selection and application of Habasit products are not recommended by an authorized Habasit sales specialist, the selection and application of Habasit products, including the related area of product safety, are the responsibility of the customer.

All indications / information are recommendations and believed to be reliable, but no representations, guarantees, or warranties of any kind are made as to their accuracy or suitability for particular applications. The data provided herein are based on laboratory work with small-scale test equipment, running at standard conditions, and do not necessarily match product performance in industrial use. New knowledge and experiences can lead to modifications and changes within a short time without prior notice. BECAUSE CONDITIONS OF USE ARE OUTSIDE OF HABASIT'S AND ITS AFFILIATED COMPANIES CONTROL, WE CANNOT ASSUME ANY

BECAUSE CONDITIONS OF USE ARE OUTSIDE OF HABASIT'S AND ITS AFFILIATED COMPANIES CONTROL, WE CANNOT ASSUME ANY LIABILITY CONCERNING THE SUITABILITY AND PROCESS ABILITY OF THE PRODUCTS MENTIONED HEREIN. THIS ALSO APPLIES TO PROCESS RESULTS / OUTPUT / MANUFACTURING GOODS AS WELL AS TO POSSIBLE DEFECTS, DAMAGES, CONSEQUENTIAL DAMAGES, AND FURTHER-REACHING CONSEQUENCES.